
RoboClaw

Dec 10, 2019

Contents

1 Installation 3

2 Usage 5
2.1 Table of Contents . 5
2.2 Indices and tables . 41

Python Module Index 43

Index 45

i

ii

RoboClaw

Roboclaw driver library and examples adapted for python3 and circuitpython and micropython

Optimizations applied to the original code include UART Serial I/O & CRC checking. These optimizations are meant
to allow your application to run faster than the vanilla python library offered by BasicMicro.

Contents 1

https://python-roboclaw.readthedocs.io/en/latest/?badge=latest

RoboClaw

2 Contents

CHAPTER 1

Installation

The best way to make sure you have the latest version of this library is by cloning the repository, and running the
python setup script.

git clone htpps://github.com/2bndy5/python-roboclaw.git
cd python-roboclaw
python setup.py install

3

RoboClaw

4 Chapter 1. Installation

CHAPTER 2

Usage

Once you have installed the library, you can import it into your python application. Please note that the roboclaw
requires a USB serial connection as well as the main power source (or battery) for the motors connected to the “+” &
“-” terminals for proper communication. In your applications code, you need only import the Roboclaw driver class.

from python_roboclaw import Roboclaw
from serial import Serial

serial_obj = Serial('dev/ttyUSB0', 38400) # default baudrate is 38400
rclaw = RoboClaw(serial_obj)
rclaw.forward_backward_mixed(64) # stops both motors

2.1 Table of Contents

2.1.1 Vanilla (examples from original library)

Bare Minimum

Listing 1: examples/roboclaw_bareminimum.py

1 """bare minimum example shows you """
2 from roboclaw import Roboclaw
3 try: # if on win32 or linux
4 from serial import Serial as UART
5 except ImportError:
6 try: # try CircuitPython
7 from board import UART
8 except ImportError: # try MicroPythom
9 from roboclaw.usart_serial_ctx import SerialUART as UART

10

11 # Windows comport name

(continues on next page)

5

RoboClaw

(continued from previous page)

12 rc = Roboclaw(UART("COM10", 38400))
13 # Linux comport name
14 # rc = Roboclaw(UART("/dev/ttyACM0", 38400))
15 # if CircuitPython or MicroPythom
16 # rc = Roboclaw(UART(rate=38400))

Simple PWM

Listing 2: examples/roboclaw_simplepwm.py

1 import time
2 from roboclaw import Roboclaw
3 try: # if on win32 or linux
4 from serial import SerialException, Serial as UART
5 except ImportError:
6 try: # try CircuitPython
7 from board import UART
8 except ImportError:
9 try: # try MicroPythom

10 from roboclaw.usart_serial_ctx import SerialUART as UART
11

12 # Windows comport name
13 # rc = Roboclaw(UART("COM3", 115200))
14 # Linux comport name
15 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
16 # if CircuitPython or MicroPythom
17 rc = Roboclaw(UART(), address=0x80)
18

19 while 1:
20 rc.forward_m1(32) # 1/4 power forward
21 rc.backward_m2(32) # 1/4 power backward
22 time.sleep(2)
23

24 rc.backward_m1(32) # 1/4 power backward
25 rc.forward_m2(32) # 1/4 power forward
26 time.sleep(2)
27

28 rc.backward_m1(0) # Stopped
29 rc.forward_m2(0) # Stopped
30 time.sleep(2)
31

32 m1duty = 16
33 m2duty = -16
34 rc.forward_backward_m1(64+m1duty) # 1/4 power forward
35 rc.forward_backward_m2(64+m2duty) # 1/4 power backward
36 time.sleep(2)
37

38 m1duty = -16
39 m2duty = 16
40 rc.forward_backward_m1(64+m1duty) # 1/4 power backward
41 rc.forward_backward_m2(64+m2duty) # 1/4 power forward
42 time.sleep(2)
43

44 rc.forward_backward_m1(64) # Stopped
45 rc.forward_backward_m2(64) # Stopped

(continues on next page)

6 Chapter 2. Usage

RoboClaw

(continued from previous page)

46 time.sleep(2)

Mixed PWM

Listing 3: examples/roboclaw_mixedpwm.py

1 import time
2 from roboclaw import Roboclaw
3 try: # if on win32 or linux
4 from serial import SerialException, Serial as UART
5 except ImportError:
6 try: # try CircuitPython
7 from board import UART
8 except ImportError:
9 try: # try MicroPythom

10 from roboclaw.usart_serial_ctx import SerialUART as UART
11

12 # Windows comport name
13 # rc = Roboclaw(UART("COM3", 115200))
14 # Linux comport name
15 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
16 # if CircuitPython or MicroPythom
17 rc = Roboclaw(UART(), address=0x80)
18

19 rc.forward_mixed(0)
20 rc.turn_right_mixed(0)
21

22

23 def test(loop=2):
24 while loop:
25 rc.forward_mixed(32)
26 time.sleep(2)
27 rc.backward_mixed(32)
28 time.sleep(2)
29 rc.turn_right_mixed(32)
30 time.sleep(2)
31 rc.turn_left_mixed(32)
32 time.sleep(2)
33 rc.forward_mixed(0)
34 rc.turn_right_mixed(32)
35 time.sleep(2)
36 rc.turn_left_mixed(32)
37 time.sleep(2)
38 rc.turn_right_mixed(0)
39 time.sleep(2)
40 loop -= 1

Speed

Listing 4: examples/roboclaw_speed.py

1 # ***Before using this example the motor/controller combination must be
2 # ***tuned and the settings saved to the Roboclaw using IonMotion.

(continues on next page)

2.1. Table of Contents 7

RoboClaw

(continued from previous page)

3 # ***The Min and Max Positions must be at least 0 and 50000
4

5 import time
6 from roboclaw import Roboclaw
7 try: # if on win32 or linux
8 from serial import SerialException, Serial as UART
9 except ImportError:

10 try: # try CircuitPython
11 from board import UART
12 except ImportError:
13 try: # try MicroPythom
14 from roboclaw.usart_serial_ctx import SerialUART as UART
15

16 # Windows comport name
17 # rc = Roboclaw(UART("COM3", 115200))
18 # Linux comport name
19 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
20 # if CircuitPython or MicroPythom
21 rc = Roboclaw(UART(), address=0x80)
22

23

24 def displayspeed():
25 enc1 = rc.read_encoder_m1()
26 enc2 = rc.read_encoder_m2()
27 speed1 = rc.read_speed_m1()
28 speed2 = rc.read_speed_m2()
29

30 print("Encoder1:"),
31 if(enc1[0] == 1):
32 print enc1[1],
33 print format(enc1[2], '02x'),
34 else:
35 print "failed",
36 print "Encoder2:",
37 if(enc2[0] == 1):
38 print enc2[1],
39 print format(enc2[2], '02x'),
40 else:
41 print "failed ",
42 print "Speed1:",
43 if(speed1[0]):
44 print speed1[1],
45 else:
46 print "failed",
47 print("Speed2:"),
48 if(speed2[0]):
49 print speed2[1]
50 else:
51 print "failed "
52

53

54 version = rc.read_version(
55 if version[0] == False:
56 print "GETVERSION Failed"
57 else:
58 print repr(version[1])
59

(continues on next page)

8 Chapter 2. Usage

RoboClaw

(continued from previous page)

60 while 1:
61 rc.speed_m1(12000)
62 rc.speed_m2(-12000)
63 for i in range(0, 200):
64 displayspeed()
65 time.sleep(0.01)
66

67 rc.speed_m1(-12000)
68 rc.speed_m2(12000)
69 for i in range(0, 200):
70 displayspeed()
71 time.sleep(0.01)

Speed and Acceleration

Listing 5: examples/roboclaw_speedaccel.py

1 # ***Before using this example the motor/controller combination must be
2 # ***tuned and the settings saved to the Roboclaw using IonMotion.
3 # ***The Min and Max Positions must be at least 0 and 50000
4

5 import time
6 from roboclaw import Roboclaw
7 try: # if on win32 or linux
8 from serial import SerialException, Serial as UART
9 except ImportError:

10 try: # try CircuitPython
11 from board import UART
12 except ImportError:
13 try: # try MicroPythom
14 from roboclaw.usart_serial_ctx import SerialUART as UART
15

16 # Windows comport name
17 # rc = Roboclaw(UART("COM3", 115200))
18 # Linux comport name
19 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
20 # if CircuitPython or MicroPythom
21 rc = Roboclaw(UART(), address=0x80)
22

23

24 def displayspeed():
25 enc1 = rc.read_encoder_m1()
26 enc2 = rc.read_encoder_m2()
27 speed1 = rc.read_speed_m1()
28 speed2 = rc.read_speed_m2()
29 print("Encoder1:")
30 if enc1[0] == 1:
31 print(enc1[1])
32 print(format(enc1[2], '02x'))
33 else:
34 print("failed")
35 print("Encoder2:")
36 if enc2[0] == 1:
37 print(enc2[1])
38 print(format(enc2[2], '02x'))

(continues on next page)

2.1. Table of Contents 9

RoboClaw

(continued from previous page)

39 else:
40 print("failed ")
41 print("Speed1:")
42 if speed1[0]:
43 print(speed1[1])
44 else:
45 print("failed")
46 print("Speed2:")
47 if speed2[0]:
48 print(speed2[1])
49 else:
50 print("failed ")
51

52

53 version = rc.ReadVersion()
54 if version[0] == False:
55 print("GETVERSION Failed")
56 else:
57 print(repr(version[1]))
58

59 while 1:
60 rc.speed_accel_m1(12000, 12000)
61 rc.speed_accel_m2(12000, -12000)
62 for i in range(0, 200):
63 displayspeed()
64 time.sleep(0.01)
65

66 rc.speed_accel_m1(12000, -12000)
67 rc.speed_accel_m2(12000, 12000)
68 for i in range(0, 200):
69 displayspeed()
70 time.sleep(0.01)

Speed, Acceleration, and Distance

Listing 6: examples/roboclaw_speedacceldistance.py

1 # ***Before using this example the motor/controller combination must be
2 # ***tuned and the settings saved to the Roboclaw using IonMotion.
3 # ***The Min and Max Positions must be at least 0 and 50000
4

5 import time
6 from roboclaw import Roboclaw
7 try: # if on win32 or linux
8 from serial import SerialException, Serial as UART
9 except ImportError:

10 try: # try CircuitPython
11 from board import UART
12 except ImportError:
13 try: # try MicroPythom
14 from roboclaw.usart_serial_ctx import SerialUART as UART
15

16 # Windows comport name
17 # rc = Roboclaw(UART("COM3", 115200))
18 # Linux comport name

(continues on next page)

10 Chapter 2. Usage

RoboClaw

(continued from previous page)

19 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
20 # if CircuitPython or MicroPythom
21 rc = Roboclaw(UART(), address=0x80)
22

23

24 def displayspeed():
25 enc1 = rc.read_encoder_m1()
26 enc2 = rc.read_encoder_m2()
27 speed1 = rc.read_speed_m1()
28 speed2 = rc.read_speed_m2()
29

30 print("Encoder1:")
31 if enc1[0] == 1:
32 print(enc1[1])
33 print(format(enc1[2], '02x'))
34 else:
35 print("failed")
36 print("Encoder2:")
37 if enc2[0] == 1:
38 print(enc2[1])
39 print(format(enc2[2], '02x'))
40 else:
41 print("failed ")
42 print("Speed1:")
43 if speed1[0]:
44 print(speed1[1])
45 else:
46 print("failed")
47 print("Speed2:")
48 if speed2[0]:
49 print(speed2[1])
50 else:
51 print("failed ")
52

53

54 version = rc.read_version()
55 if version[0] == False:
56 print("GETVERSION Failed")
57 else:
58 print(repr(version[1]))
59

60 while 1:
61 rc.speed_accel_distance_m1(12000, 12000, 42000, 1)
62 rc.speed_accel_distance_m2(12000, -12000, 42000, 1)
63

64 # distance travelled is v*v/2a = 12000*12000/2*48000 = 1500
65 rc.speed_accel_distance_m1(12000, 0, 0, 0)
66

67 # that makes the total move in one direction 48000
68 rc.speed_accel_distance_m2(12000, 0, 0, 0)
69

70 buffers = (0, 0, 0)
71

72 # Loop until distance command has completed
73 while(buffers[1] != 0x80 and buffers[2] != 0x80):
74 print("Buffers: ")
75 print(buffers[1])

(continues on next page)

2.1. Table of Contents 11

RoboClaw

(continued from previous page)

76 print(" ")
77 print(buffers[2])
78 displayspeed()
79 buffers = rc.ReadBuffers()
80

81 time.sleep(1)
82

83 rc.speed_accel_distance_m1(48000, -12000, 46500, 1)
84 rc.speed_accel_distance_m2(48000, 12000, 46500, 1)
85

86 # distance travelled is v*v/2a = 12000*12000/2*48000 = 1500
87 rc.speed_accel_distance_m1(48000, 0, 0, 0)
88 # that makes the total move in one direction 48000
89 rc.speed_accel_distance_m2(48000, 0, 0, 0)
90

91 buffers = (0, 0, 0)
92 # Loop until distance command has completed
93 while(buffers[1] != 0x80 and buffers[2] != 0x80):
94 print("Buffers: ")
95 print(buffers[1])
96 print(" ")
97 print(buffers[2])
98 displayspeed()
99 buffers = rc.read_buffer_length()

100

101 # When no second command is given the motors will automatically slow down to 0
→˓which takes 1 second

102 time.sleep(1)

Speed and Distance

Listing 7: examples/roboclaw_speeddistance.py

1 # ***Before using this example the motor/controller combination must be
2 # ***tuned and the settings saved to the Roboclaw using IonMotion.
3 # ***The Min and Max Positions must be at least 0 and 50000
4

5 import time
6 from roboclaw import Roboclaw
7 try: # if on win32 or linux
8 from serial import SerialException, Serial as UART
9 except ImportError:

10 try: # try CircuitPython
11 from board import UART
12 except ImportError:
13 try: # try MicroPythom
14 from roboclaw.usart_serial_ctx import SerialUART as UART
15

16 # Windows comport name
17 # rc = Roboclaw(UART("COM3", 115200))
18 # Linux comport name
19 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
20 # if CircuitPython or MicroPythom
21 rc = Roboclaw(UART(), address=0x80)
22

(continues on next page)

12 Chapter 2. Usage

RoboClaw

(continued from previous page)

23

24 def displayspeed():
25 enc1 = rc.read_encoder_m1()
26 enc2 = rc.read_encoder_m2()
27 speed1 = rc.read_speed_m1()
28 speed2 = rc.read_speed_m2()
29

30 print("Encoder1:")
31 if enc1[0] == 1:
32 print(enc1[1])
33 print(format(enc1[2], '02x'))
34 else:
35 print("failed")
36 print("Encoder2:")
37 if enc2[0] == 1:
38 print(enc2[1])
39 print(format(enc2[2], '02x'))
40 else:
41 print("failed ")
42 print("Speed1:")
43 if speed1[0]:
44 print(speed1[1])
45 else:
46 print("failed")
47 print("Speed2:")
48 if speed2[0]:
49 print(speed2[1])
50 else:
51 print("failed ")
52

53

54 version = rc.read_version()
55 if version[0] == False:
56 print("GETVERSION Failed")
57 else:
58 print(repr(version[1]))
59

60 while 1:
61 rc.speed_distance_m1(12000, 48000, 1)
62 rc.speed_distance_m2(-12000, 48000, 1)
63 buffers = (0, 0, 0)
64 # Loop until distance command has completed
65 while(buffers[1] != 0x80 and buffers[2] != 0x80):
66 displayspeed()
67 buffers = rc.read_buffer_length()
68

69 time.sleep(2)
70

71 rc.speed_distance_m1(-12000, 48000, 1)
72 rc.speed_distance_m2(12000, 48000, 1)
73 buffers = (0, 0, 0)
74 # Loop until distance command has completed
75 while(buffers[1] != 0x80 and buffers[2] != 0x80):
76 displayspeed()
77 buffers = rc.read_buffer_length()
78

79 # When no second command is given the motors will automatically slow down to 0
→˓which takes 1 second (continues on next page)

2.1. Table of Contents 13

RoboClaw

(continued from previous page)

80 time.sleep(2)
81

82 rc.speed_distance_m1(12000, 48000, 1)
83 rc.speed_distance_m2(-12000, 48000, 1)
84 rc.speed_distance_m1(-12000, 48000, 0)
85 rc.speed_distance_m2(12000, 48000, 0)
86 rc.speed_distance_m1(0, 48000, 0)
87 rc.speed_distance_m2(0, 48000, 0)
88 buffers = (0, 0, 0)
89 # Loop until distance command has completed
90 while(buffers[1] != 0x80 and buffers[2] != 0x80):
91 displayspeed()
92 buffers = rc.read_buffer_length()
93

94 time.sleep(1)

Mixed Speed and Acceleration

Listing 8: examples/roboclaw_mixedspeedaccel.py

1 # ***Before using this example the motor/controller combination must be
2 # ***tuned and the settings saved to the Roboclaw using IonMotion.
3 # ***The Min and Max Positions must be at least 0 and 50000
4

5 import time
6 from roboclaw import Roboclaw
7 try: # if on win32 or linux
8 from serial import SerialException, Serial as UART
9 except ImportError:

10 try: # try CircuitPython
11 from board import UART
12 except ImportError:
13 try: # try MicroPythom
14 from roboclaw.usart_serial_ctx import SerialUART as UART
15

16 # Windows comport name
17 # rc = Roboclaw(UART("COM3", 115200))
18 # Linux comport name
19 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
20 # if CircuitPython or MicroPythom
21 rc = Roboclaw(UART(), address=0x80)
22

23

24 def displayspeed():
25 enc1 = rc.read_encoder_m1()
26 enc2 = rc.read_encoder_m2()
27 speed1 = rc.read_speed_m1()
28 speed2 = rc.read_speed_m2()
29

30 print("Encoder1:")
31 if enc1[0] == 1:
32 print(enc1[1])
33 print(format(enc1[2], '02x'))
34 else:
35 print("failed")

(continues on next page)

14 Chapter 2. Usage

RoboClaw

(continued from previous page)

36 print("Encoder2:")
37 if enc2[0] == 1:
38 print(enc2[1])
39 print(format(enc2[2], '02x'))
40 else:
41 print("failed ")
42 print("Speed1:")
43 if speed1[0]:
44 print(speed1[1])
45 else:
46 print("failed")
47 print("Speed2:")
48 if(speed2[0]):
49 print(speed2[1])
50 else:
51 print("failed ")
52

53

54 version = rc.ReadVersion()
55 if version[0] == False:
56 print("GETVERSION Failed")
57 else:
58 print(repr(version[1]))
59

60 while 1:
61 rc.speed_accel_m1_m2(12000, 12000, -12000)
62 for i in range(0, 200):
63 displayspeed()
64 time.sleep(0.01)
65

66 rc.speed_accel_m1_m2(12000, -12000, 12000)
67 for i in range(0, 200):
68 displayspeed()
69 time.sleep(0.01)

Position

Listing 9: examples/roboclaw_position.py

1 # ***Before using this example the motor/controller combination must be
2 # ***tuned and the settings saved to the Roboclaw using IonMotion.
3 # ***The Min and Max Positions must be at least 0 and 50000
4

5 import time
6 from roboclaw import Roboclaw
7 try: # if on win32 or linux
8 from serial import SerialException, Serial as UART
9 except ImportError:

10 try: # try CircuitPython
11 from board import UART
12 except ImportError:
13 try: # try MicroPythom
14 from roboclaw.usart_serial_ctx import SerialUART as UART
15

16 # Windows comport name
(continues on next page)

2.1. Table of Contents 15

RoboClaw

(continued from previous page)

17 # rc = Roboclaw(UART("COM3", 115200))
18 # Linux comport name
19 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
20 # if CircuitPython or MicroPythom
21 rc = Roboclaw(UART(), address=0x80)
22

23

24 def displayspeed():
25 enc1 = rc.read_encoder_m1()
26 enc2 = rc.read_encoder_m2()
27 speed1 = rc.read_speed_m1()
28 speed2 = rc.read_speed_m2()
29

30 print("Encoder1:")
31 if enc1[0] == 1:
32 print(enc1[1])
33 print(format(enc1[2], '02x'))
34 else:
35 print("failed")
36 print("Encoder2:")
37 if enc2[0] == 1:
38 print(enc2[1])
39 print(format(enc2[2], '02x'))
40 else:
41 print("failed ")
42 print("Speed1:")
43 if speed1[0]:
44 print(speed1[1])
45 else:
46 print("failed")
47 print("Speed2:")
48 if speed2[0]:
49 print(speed2[1])
50 else:
51 print("failed ")
52

53

54 while 1:
55 print("Pos 50000")
56 rc.speed_accel_deccel_position_m1(32000, 12000, 32000, 50000, 0)
57 for i in range(0, 80):
58 displayspeed()
59 time.sleep(0.1)
60

61 time.sleep(2)
62

63 print("Pos 0")
64 rc.speed_accel_deccel_position_m1(32000, 12000, 32000, 0, 0)
65 for i in range(0, 80):
66 displayspeed()
67 time.sleep(0.1)
68

69 time.sleep(2)

RC mode Pulses

16 Chapter 2. Usage

RoboClaw

Listing 10: examples/roboclaw_rcpulses.py

1 """ On Roboclaw set switch 1 and 6 on. """
2 import time
3 from board import SCL, SDA
4 import busio
5

6 # Import the PCA9685 module. Available in the bundle and here:
7 # https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
8 from adafruit_pca9685 import PCA9685
9

10 from adafruit_motor import servo
11

12 i2c = busio.I2C(SCL, SDA)
13

14 # Create a simple PCA9685 class instance.
15 pca = PCA9685(i2c)
16 # You can optionally provide a finer tuned reference clock speed to improve the

→˓accuracy of the
17 # timing pulses. This calibration will be specific to each board and its environment.

→˓See the
18 # calibration.py example in the PCA9685 driver.
19 # pca = PCA9685(i2c, reference_clock_speed=25630710)
20 pca.frequency = 50
21

22 # The pulse range is [1250 (full forward), 1750 (full reverse)].
23 pulses[
24 servo.ContinuousServo(pca.channels[7], min_pulse=1250, max_pulse=1750),
25 servo.ContinuousServo(pca.channels[8], min_pulse=1250, max_pulse=1750)
26]
27

28 pulses[0].throttle = 1
29 pulses[1].throttle = -1
30 time.sleep(2)
31

32 # stop
33 pulses[0].throttle = 0
34 pulses[1].throttle = 0
35

36 pca.deinit()

RC mode Pulses Mixed

Listing 11: examples/roboclaw_rcpulsemixed.py

1 # On Roboclaw set switch 1 and 6 on. <-- what does this refer to?
2 # mode 2 option 4 <-- my note based on user manual pg 26
3 import time
4 from board import SCL, SDA
5 import busio
6

7 # Import the PCA9685 module. Available in the bundle and here:
8 # https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
9 from adafruit_pca9685 import PCA9685

10

(continues on next page)

2.1. Table of Contents 17

RoboClaw

(continued from previous page)

11 from adafruit_motor import servo
12

13 i2c = busio.I2C(SCL, SDA)
14

15 # Create a simple PCA9685 class instance.
16 pca = PCA9685(i2c)
17 # You can optionally provide a finer tuned reference clock speed to improve the

→˓accuracy of the
18 # timing pulses. This calibration will be specific to each board and its environment.

→˓See the
19 # calibration.py example in the PCA9685 driver.
20 # pca = PCA9685(i2c, reference_clock_speed=25630710)
21 pca.frequency = 50
22

23 # The pulse range is [1250 (full forward), 1750 (full reverse)].
24 pulses[
25 servo.ContinuousServo(pca.channels[7], min_pulse=1250, max_pulse=1750),
26 servo.ContinuousServo(pca.channels[8], min_pulse=1250, max_pulse=1750)
27]
28

29 # TODO MATH OF PULSE INTO FLOAT RANGE [-1, 1]
30 while 1:
31 //forward
32 pulses[0].throttle = 1 # writeMicroseconds(1600);
33 pulses[1].throttle = 1 # writeMicroseconds(1500);
34 time.sleep(2)
35

36 //backward
37 pulses[0].throttle = 1 # writeMicroseconds(1400);
38 pulses[1].throttle = 1 # writeMicroseconds(1500);
39 time.sleep(2)
40

41 //left
42 pulses[0].throttle = 1 # writeMicroseconds(1500);
43 pulses[1].throttle = 1 # writeMicroseconds(1600);
44 time.sleep(2)
45

46 //right
47 pulses[0].throttle = 1 # writeMicroseconds(1500);
48 pulses[1].throttle = 1 # writeMicroseconds(1400);
49 time.sleep(2)
50

51 //mixed forward/left
52 pulses[0].throttle = 1 # writeMicroseconds(1600);
53 pulses[1].throttle = 1 # writeMicroseconds(1600);
54 time.sleep(2)
55

56 //mixed forward/right
57 pulses[0].throttle = 1 # writeMicroseconds(1600);
58 pulses[1].throttle = 1 # writeMicroseconds(1400);
59 time.sleep(2)
60

61 //mixed backward/left
62 pulses[0].throttle = 1 # writeMicroseconds(1400);
63 pulses[1].throttle = 1 # writeMicroseconds(1600);
64 time.sleep(2)
65

(continues on next page)

18 Chapter 2. Usage

RoboClaw

(continued from previous page)

66 //mixed backward/right
67 pulses[0].throttle = 1 # writeMicroseconds(1400);
68 pulses[1].throttle = 1 # writeMicroseconds(1400);
69 time.sleep(2)
70

71 }

Read Various Data

Listing 12: examples/roboclaw_read.py

1 import time
2 from roboclaw import Roboclaw
3 try: # if on win32 or linux
4 from serial import SerialException, Serial as UART
5 except ImportError:
6 try: # try CircuitPython
7 from board import UART
8 except ImportError:
9 try: # try MicroPythom

10 from roboclaw.usart_serial_ctx import SerialUART as UART
11

12 # Windows comport name
13 # rc = Roboclaw(UART("COM3", 115200))
14 # Linux comport name
15 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
16 # if CircuitPython or MicroPythom
17 rc = Roboclaw(UART(), address=0x80)
18

19

20 def displayspeed():
21 enc1 = rc.read_encoder_m1()
22 enc2 = rc.read_encoder_m2()
23 speed1 = rc.read_speed_m1()
24 speed2 = rc.read_speed_m2()
25

26 print("Encoder1:")
27 if enc1[0] == 1:
28 print(enc1[1])
29 print(format(enc1[2], '02x'))
30 else:
31 print("failed")
32 print("Encoder2:")
33 if enc2[0] == 1:
34 print(enc2[1])
35 print(format(enc2[2], '02x'))
36 else:
37 print("failed ")
38 print("Speed1:")
39 if speed1[0]:
40 print(speed1[1])
41 else:
42 print("failed")
43 print("Speed2:")
44 if speed2[0]:

(continues on next page)

2.1. Table of Contents 19

RoboClaw

(continued from previous page)

45 print(speed2[1])
46 else:
47 print("failed ")
48

49

50 version = rc.ReadVersion()
51 if version[0] == False:
52 print("GETVERSION Failed")
53 else:
54 print(repr(version[1]))
55

56

57 def test(loop=2):
58 while loop:
59 displayspeed()
60 loop -= 1

Read Version

Listing 13: examples/roboclaw_readversion.py

1 import time
2 from roboclaw import Roboclaw
3 try: # if on win32 or linux
4 from serial import SerialException, Serial as UART
5 except ImportError:
6 try: # try CircuitPython
7 from board import UART
8 except ImportError:
9 try: # try MicroPythom

10 from roboclaw.usart_serial_ctx import SerialUART as UART
11

12 # Windows comport name
13 # rc = Roboclaw(UART("COM3", 115200))
14 # Linux comport name
15 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
16 # if CircuitPython or MicroPythom
17 rc = Roboclaw(UART(), address=0x80)
18

19 while 1:
20 # Get version string
21 version = rc.read_version()
22 if version[0] == False:
23 print("GETVERSION Failed")
24 else:
25 print(repr(version[1]))
26 time.sleep(1)

Read EEPROM

20 Chapter 2. Usage

RoboClaw

Listing 14: examples/roboclaw_readeeprom.py

1 import time
2 from roboclaw import Roboclaw
3 try: # if on win32 or linux
4 from serial import SerialException, Serial as UART
5 except ImportError:
6 try: # try CircuitPython
7 from board import UART
8 except ImportError:
9 try: # try MicroPythom

10 from roboclaw.usart_serial_ctx import SerialUART as UART
11

12 # Windows comport name
13 # rc = Roboclaw(UART("COM3", 115200))
14 # Linux comport name
15 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
16 # if CircuitPython or MicroPythom
17 rc = Roboclaw(UART(), address=0x80)
18

19 # Get version string
20 for x in range(0, 255):
21 value = rc.read_eeprom(x)
22 print("EEPROM:")
23 print(x)
24 print(" ")
25 if value[0] == False:
26 print("Failed")
27 else:
28 print(value[1])

Write EEPROM

Listing 15: examples/roboclaw_writeeeprom.py

1 from roboclaw import Roboclaw
2 try: # if on win32 or linux
3 from serial import SerialException, Serial as UART
4 except ImportError:
5 try: # try CircuitPython
6 from board import UART
7 except ImportError:
8 try: # try MicroPythom
9 from roboclaw.usart_serial_ctx import SerialUART as UART

10

11 # Windows comport name
12 # rc = Roboclaw(UART("COM3", 115200))
13 # Linux comport name
14 # rc = Roboclaw(UART("/dev/ttyACM0", 115200))
15 # if CircuitPython or MicroPythom
16 rc = Roboclaw(UART(), address=0x80)
17

18 # Get version string
19 for x in range(0, 255):
20 value = rc.write_eeprom(x, x * 2)

(continues on next page)

2.1. Table of Contents 21

RoboClaw

(continued from previous page)

21 print("EEPROM:")
22 print(x)
23 print(" ")
24 if not value:
25 print("Failed")
26 else:
27 print("Written")

2.1.2 Roboclaw

Roboclaw driver class

roboclaw driver module contains the roboclaw driver class that controls the roboclaw via a UART serial

class roboclaw.roboclaw.Roboclaw(serial_obj, address=128, retries=3, packet_serial=True)
A driver class for the RoboClaw Motor Controller device.

Parameters

• serial_obj (Serial) – The serial obj associated with the serial port that is connected
to the RoboClaw.

• address (int) – The unique address assigned to the particular RoboClaw. Valid addresses
range [0x80, 0x87].

• retries (int) – The amount of attempts to read/write data over the serial port. Defaults
to 3.

packet_serial = None
this bool represents if using packet serial mode.

address
The Address of the specific Roboclaw device on the object’s serial port Must be in range [0x80, 0x87]

send_random_data(cnt, address=None)
Send some randomly generated data of of a certain length. Don’t know what this would be used for, but it
was in the original driver code. . .

Parameters cnt (int) – the number of bytes to randomly generate.

forward_m1(val, address=None)
Drive motor 1 forward.

Parameters val (int) – Valid data range is 0 - 127. A value of 127 = full speed forward, 64 =
about half speed forward and 0 = full stop.

backward_m1(val, address=None)
Drive motor 1 backwards.

Parameters val (int) – Valid data range is 0 - 127. A value of 127 full speed backwards, 64
= about half speed backward and 0 = full stop.

set_min_voltage_main_battery(val, address=None)
Sets main battery (B- / B+) minimum voltage level. If the battery voltages drops below the set voltage
level, RoboClaw will stop driving the motors. The voltage is set in .2 volt increments. The minimum value
allowed which is 6V.

Parameters val (float) – The valid data range is [6, 34] Volts.

22 Chapter 2. Usage

https://pyserial.readthedocs.io/en/latest/pyserial_api.html#serial.Serial
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float

RoboClaw

set_max_voltage_main_battery(val, address=None)
Sets main battery (B- / B+) maximum voltage level. During regenerative breaking a back voltage is applied
to charge the battery. When using a power supply, by setting the maximum voltage level, RoboClaw will,
before exceeding it, go into hard braking mode until the voltage drops below the maximum value set. This
will prevent overvoltage conditions when using power supplies.

Parameters val (float) – The valid data range is [6, 34] Volts.

forward_m2(val, address=None)
Drive motor 2 forward.

Parameters val (int) – Valid data range is [0, 127]. A value of 127 full speed forward, 64 =
about half speed forward and 0 = full stop.

backward_m2(val, address=None)
Drive motor 2 backwards.

Parameters val (int) – Valid data range is [0, 127]. A value of 127 full speed backwards, 64
= about half speed backward and 0 = full stop.

forward_backward_m1(val, address=None)
Drive motor 1 forward or reverse.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = full speed reverse, 64 =
stop and 127 = full speed forward.

forward_backward_m2(val, address=None)
Drive motor 2 forward or reverse.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = full speed reverse, 64 =
stop and 127 = full speed forward.

forward_mixed(val, address=None)
Drive forward in mix mode.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = full stop and 127 = full
forward.

backward_mixed(val, address=None)
Drive backwards in mix mode.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = full stop and 127 = full
reverse.

turn_right_mixed(val, address=None)
Turn right in mix mode.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = stop turn and 127 = full
speed turn.

turn_left_mixed(val, address=None)
Turn left in mix mode.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = stop turn and 127 = full
speed turn.

forward_backward_mixed(val, address=None)
Drive forward or backwards.

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = full backward, 64 = stop
and 127 = full forward.

left_right_mixed(val, address=None)
Turn left or right.

2.1. Table of Contents 23

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

RoboClaw

Parameters val (int) – Valid data range is [0, 127]. A value of 0 = full left, 64 = stop turn
and 127 = full right.

read_encoder_m1(address=None)
Read M1 encoder count/position.

Returns [Enc1(4 bytes), Status, crc16(2 bytes)]

Quadrature encoders have a range of 0 to 4,294,967,295. Absolute encoder values are converted from an
analog voltage into a value from 0 to 4095 for the full 5.1v range.

The status byte tracks counter underflow, direction and overflow. The byte value represents:

• Bit0 - Counter Underflow (1= Underflow Occurred, Clear After Reading)

• Bit1 - Direction (0 = Forward, 1 = Backwards)

• Bit2 - Counter Overflow (1= Underflow Occurred, Clear After Reading)

• Bit3 through Bit7 - Reserved

read_encoder_m2(address=None)
Read M2 encoder count/position.

Returns [EncoderCount(4 bytes), Status]

Quadrature encoders have a range of 0 to 4,294,967,295. Absolute encoder values are converted from an
analog voltage into a value from 0 to 4095 for the full 5.1v range.

The Status byte tracks counter underflow, direction and overflow. The byte value represents:

• Bit0 - Counter Underflow (1= Underflow Occurred, Cleared After Reading)

• Bit1 - Direction (0 = Forward, 1 = Backwards)

• Bit2 - Counter Overflow (1= Underflow Occurred, Cleared After Reading)

• Bit3 through Bit7 - Reserved

read_speed_m1(address=None)
Read M1 counter speed. Returned value is in pulses per second. MCP keeps track of how many pulses
received per second for both encoder channels.

Returns [Speed(4 bytes), Status]

Status indicates the direction (0 – forward, 1 - backward).

read_speed_m2(address=None)
Read M2 counter speed. Returned value is in pulses per second. MCP keeps track of how many pulses
received per second for both encoder channels.

Returns [Speed(4 bytes), Status]

Status indicates the direction (0 – forward, 1 - backward).

reset_encoders(address=None)
Will reset both quadrature decoder counters to zero. This command applies to quadrature encoders only.

read_version(address=None)
Read RoboClaw firmware version. Returns up to 48 bytes(depending on the Roboclaw model) and is
terminated by a line feed character and a null character.

Returns [“MCP266 2x60A v1.0.0”,10,0]

The command will return up to 48 bytes. The return string includes the product name and firmware version.
The return string is terminated with a line feed (10) and null (0) character.

24 Chapter 2. Usage

https://docs.python.org/3.6/library/functions.html#int

RoboClaw

set_enc_m1(cnt, address=None)
Set the value of the Encoder 1 register. Useful when homing motor 1. This command applies to quadrature
encoders only.

set_enc_m2(cnt, address=None)
Set the value of the Encoder 2 register. Useful when homing motor 2. This command applies to quadrature
encoders only.

read_main_battery_voltage(address=None)
Read the main battery voltage level connected to B+ and B- terminals.

Returns The voltage is returned in 10ths of a volt (eg 30.0).

read_logic_battery_voltage(address=None)
Read a logic battery voltage level connected to LB+ and LB- terminals. The voltage is returned in 10ths
of a volt(eg 50 = 5v).

Returns [Value.Byte1, Value.Byte0]

set_min_voltage_logic_battery(val, address=None)
Sets logic input (LB- / LB+) minimum voltage level. RoboClaw will shut down with an error if the voltage
is below this level. The voltage is set in .2 volt increments. The minimum value allowed which is 6V.

Parameters val (float) – The valid data range is [6, 34].

Note: This command is included for backwards compatibility. We recommend you use
set_logic_voltages() instead.

set_max_voltage_logic_battery(val, address=None)
Sets logic input (LB- / LB+) maximum voltage level. RoboClaw will shutdown with an error if the voltage
is above this level.

Parameters val (float) – The valid data range is [6, 34].

Note: This command is included for backwards compatibility. We recommend you use
set_main_voltages() instead.

set_m1_velocity_pid(p, i, d, qpps, address=None)
Several motor and quadrature combinations can be used with RoboClaw. In some cases the default PID
values will need to be tuned for the systems being driven. This gives greater flexibility in what motor
and encoder combinations can be used. The RoboClaw PID system consist of four constants starting with
QPPS, P = Proportional, I= Integral and D= Derivative.

Parameters

• p (int) – The default P is 0x00010000.

• i (int) – The default I is 0x00008000.

• d (int) – The default D is 0x00004000.

• qpps (int) – The default QPPS is 44000.

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default values used
after a reset.

set_m2_velocity_pid(p, i, d, qpps, address=None)
Several motor and quadrature combinations can be used with RoboClaw. In some cases the default PID
values will need to be tuned for the systems being driven. This gives greater flexibility in what motor

2.1. Table of Contents 25

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

RoboClaw

and encoder combinations can be used. The RoboClaw PID system consist of four constants starting with
QPPS, P = Proportional, I= Integral and D= Derivative.

Parameters

• p (int) – The default P is 0x00010000.

• i (int) – The default I is 0x00008000.

• d (int) – The default D is 0x00004000.

• qpps (int) – The default QPPS is 44000.

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default values used
after a reset.

read_raw_speed_m1(address=None)
Read the pulses counted in that last 300th of a second. This is an unfiltered version of
read_speed_m1(). This function can be used to make a independent PID routine. Value returned
is in encoder counts per second.

Returns [Speed(4 bytes), Status]

The Status byte is direction (0 – forward, 1 - backward).

read_raw_speed_m2(address=None)
Read the pulses counted in that last 300th of a second. This is an unfiltered version of
read_speed_m2(). This function can be used to make a independent PID routine. Value returned
is in encoder counts per second.

Returns [Speed(4 bytes), Status]

The Status byte is direction (0 – forward, 1 - backward).

duty_m1(val, address=None)
Drive M1 using a duty cycle value. The duty cycle is used to control the speed of the motor without a
quadrature encoder.

Parameters val (int) – The duty value is signed and the range [-32767, 32767] (eg. +-100%
duty).

duty_m2(val, address=None)
Drive M2 using a duty cycle value. The duty cycle is used to control the speed of the motor without a
quadrature encoder.

Parameters val (int) – The duty value is signed and the range [-32767, 32767] (eg. +-100%
duty).

duty_m1_m2(m1, m2, address=None)
Drive both M1 and M2 using a duty cycle value. The duty cycle is used to control the speed of the motor
without a quadrature encoder.

Parameters

• m1 (int) – The duty value is signed and the range [-32767, 32767] (eg. +-100% duty).

• m2 (int) – The duty value is signed and the range [-32767, 32767] (eg. +-100% duty).

speed_m1(val, address=None)
Drive M1 using a speed value. The sign indicates which direction the motor will turn. This command is
used to drive the motor by quad pulses per second. Different quadrature encoders will have different rates
at which they generate the incoming pulses. The values used will differ from one encoder to another. Once
a value is sent the motor will begin to accelerate as fast as possible until the defined rate is reached.

Parameters val (int) – Valid input ranges [-2147483647, 2147483647].

26 Chapter 2. Usage

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

RoboClaw

speed_m2(val, address=None)
Drive M2 with a speed value. The sign indicates which direction the motor will turn. This command is
used to drive the motor by quad pulses per second. Different quadrature encoders will have different rates
at which they generate the incoming pulses. The values used will differ from one encoder to another. Once
a value is sent, the motor will begin to accelerate as fast as possible until the rate defined is reached.

Parameters val (int) – Valid input ranges [-2147483647, 2147483647].

speed_m1_m2(m1, m2, address=None)
Drive M1 and M2 in the same command using a signed speed value. The sign indicates which direction the
motor will turn. This command is used to drive the motor by quad pulses per second. Different quadrature
encoders will have different rates at which they generate the incoming pulses. The values used will differ
from one encoder to another. Once a value is sent the motor will begin to accelerate as fast as possible
until the rate defined is reached.

Parameters

• m1 (int) – Valid input ranges [-2147483647, 2147483647].

• m2 (int) – Valid input ranges [-2147483647, 2147483647].

speed_accel_m1(accel, speed, address=None)
Drive M1 with a signed speed and acceleration value. The sign indicates which direction the motor will
run. The acceleration values are not signed. This command is used to drive the motor by quad pulses
per second and using an acceleration value for ramping. Different quadrature encoders will have different
rates at which they generate the incoming pulses. The values used will differ from one encoder to another.
Once a value is sent the motor will begin to accelerate incrementally until the rate defined is reached.

The acceleration is measured in speed increase per second. An acceleration value of 12,000 QPPS with a
speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example
would be an acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the
motor to 12,000 QPPS in 0.5 seconds.

speed_accel_m2(accel, speed, address=None)
Drive M2 with a signed speed and acceleration value. The sign indicates which direction the motor will
run. The acceleration value is not signed. This command is used to drive the motor by quad pulses per
second and using an acceleration value for ramping. Different quadrature encoders will have different rates
at which they generate the incoming pulses. The values used will differ from one encoder to another. Once
a value is sent the motor will begin to accelerate incrementally until the rate defined is reached.

The acceleration is measured in speed increase per second. An acceleration value of 12,000 QPPS with a
speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example
would be an acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the
motor to 12,000 QPPS in 0.5 seconds.

speed_accel_m1_m2(accel, speed1, speed2, address=None)
Drive M1 and M2 in the same command using one value for acceleration and two signed speed values for
each motor. The sign indicates which direction the motor will run. The acceleration value is not signed.
The motors are sync during acceleration. This command is used to drive the motor by quad pulses per
second and using an acceleration value for ramping. Different quadrature encoders will have different
rates at which they generate the incoming pulses. The values used will differ from one encoder to another.
Once a value is sent the motor will begin to accelerate incrementally until the rate defined is reached.

The acceleration is measured in speed increase per second. An acceleration value of 12,000 QPPS with a
speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example
would be an acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the
motor to 12,000 QPPS in 0.5 seconds.

speed_distance_m1(speed, distance, buffer, address=None)
Drive M1 with a signed speed and distance value. The sign indicates which direction the motor will run.

2.1. Table of Contents 27

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

RoboClaw

The distance value is not signed. This command is buffered. This command is used to control the top
speed and total distance traveled by the motor. Each motor channel M1 and M2 have separate buffers.
This command will execute immediately if no other command for that channel is executing, otherwise the
command will be buffered in the order it was sent. Any buffered or executing command can be stopped
when a new command is issued by setting the Buffer argument. All values used are in quad pulses per
second.

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered and
executed in the order sent. If a value of 1 is used the current running command is stopped, any other
commands in the buffer are deleted and the new command is executed.

speed_distance_m2(speed, distance, buffer, address=None)
Drive M2 with a speed and distance value. The sign indicates which direction the motor will run. The
distance value is not signed. This command is buffered. Each motor channel M1 and M2 have separate
buffers. This command will execute immediately if no other command for that channel is executing,
otherwise the command will be buffered in the order it was sent. Any buffered or executing command can
be stopped when a new command is issued by setting the Buffer argument. All values used are in quad
pulses per second.

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered and
executed in the order sent. If a value of 1 is used the current running command is stopped, any other
commands in the buffer are deleted and the new command is executed.

speed_distance_m1_m2(speed1, distance1, speed2, distance2, buffer, address=None)
Drive M1 and M2 with a speed and distance value. The sign indicates which direction the motor will
run. The distance value is not signed. This command is buffered. Each motor channel M1 and M2
have separate buffers. This command will execute immediately if no other command for that channel is
executing, otherwise the command will be buffered in the order it was sent. Any buffered or executing
command can be stopped when a new command is issued by setting the Buffer argument. All values used
are in quad pulses per second.

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered and
executed in the order sent. If a value of 1 is used the current running command is stopped, any other
commands in the buffer are deleted and the new command is executed.

speed_accel_distance_m1(accel, speed, distance, buffer, address=None)
Drive M1 with a speed, acceleration and distance value. The sign indicates which direction the motor will
run. The acceleration and distance values are not signed. This command is used to control the motors
top speed, total distanced traveled and at what incremental acceleration value to use until the top speed is
reached. Each motor channel M1 and M2 have separate buffers. This command will execute immediately
if no other command for that channel is executing, otherwise the command will be buffered in the order it
was sent. Any buffered or executing command can be stopped when a new command is issued by setting
the Buffer argument. All values used are in quad pulses per second.

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered and
executed in the order sent. If a value of 1 is used the current running command is stopped, any other
commands in the buffer are deleted and the new command is executed.

speed_accel_distance_m2(accel, speed, distance, buffer, address=None)
Drive M2 with a speed, acceleration and distance value. The sign indicates which direction the motor will
run. The acceleration and distance values are not signed. This command is used to control the motors
top speed, total distanced traveled and at what incremental acceleration value to use until the top speed is
reached. Each motor channel M1 and M2 have separate buffers. This command will execute immediately
if no other command for that channel is executing, otherwise the command will be buffered in the order it
was sent. Any buffered or executing command can be stopped when a new command is issued by setting
the Buffer argument. All values used are in quad pulses per second.

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered and

28 Chapter 2. Usage

RoboClaw

executed in the order sent. If a value of 1 is used the current running command is stopped, any other
commands in the buffer are deleted and the new command is executed.

speed_accel_distance_m1_m2(accel, speed1, distance1, speed2, distance2, buffer, ad-
dress=None)

Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which direction the
motor will run. The acceleration and distance values are not signed. This command is used to control
both motors top speed, total distanced traveled and at what incremental acceleration value to use until the
top speed is reached. Each motor channel M1 and M2 have separate buffers. This command will execute
immediately if no other command for that channel is executing, otherwise the command will be buffered
in the order it was sent. Any buffered or executing command can be stopped when a new command is
issued by setting the Buffer argument. All values used are in quad pulses per second.

The Buffer argument can be set to a 1 or 0. If a value of 0 is used the command will be buffered and
executed in the order sent. If a value of 1 is used the current running command is stopped, any other
commands in the buffer are deleted and the new command is executed.

read_buffer_length(address=None)
Read both motor M1 and M2 buffer lengths. This command can be used to determine how many commands
are waiting to execute.

Returns [BufferM1, BufferM2]

The return values represent how many commands per buffer are waiting to be executed. The maximum
buffer size per motor is 64 commands(0x3F). A return value of 0x80(128) indicates the buffer is empty. A
return value of 0 indiciates the last command sent is executing. A value of 0x80 indicates the last command
buffered has finished.

read_pwms(address=None)
Read the current PWM output values for the motor channels. The values returned are +/-32767. The duty
cycle percent is calculated by dividing the Value by 327.67.

Returns [M1 PWM(2 bytes), M2 PWM(2 bytes)]

read_currents(address=None)
Read the current draw from each motor in 10ma increments. The amps value is calculated by dividing the
value by 100.

Returns [M1 Current(2 bytes), M2 Currrent(2 bytes)]

speed_accel_m1_m2_2(accel1, speed1, accel2, speed2, address=None)
Drive M1 and M2 in the same command using one value for acceleration and two signed speed values for
each motor. The sign indicates which direction the motor will run. The acceleration value is not signed.
The motors are sync during acceleration. This command is used to drive the motor by quad pulses per
second and using an acceleration value for ramping. Different quadrature encoders will have different
rates at which they generate the incoming pulses. The values used will differ from one encoder to another.
Once a value is sent the motor will begin to accelerate incrementally until the rate defined is reached.

The acceleration is measured in speed increase per second. An acceleration value of 12,000 QPPS with a
speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example
would be an acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the
motor to 12,000 QPPS in 0.5 seconds.

speed_accel_distance_m1_m2_2(accel1, speed1, distance1, accel2, speed2, distance2, buffer,
address=None)

Drive M1 and M2 in the same command using one value for acceleration and two signed speed values for
each motor. The sign indicates which direction the motor will run. The acceleration value is not signed.
The motors are sync during acceleration. This command is used to drive the motor by quad pulses per
second and using an acceleration value for ramping. Different quadrature encoders will have different

2.1. Table of Contents 29

RoboClaw

rates at which they generate the incoming pulses. The values used will differ from one encoder to another.
Once a value is sent the motor will begin to accelerate incrementally until the rate defined is reached.

The acceleration is measured in speed increase per second. An acceleration value of 12,000 QPPS with a
speed of 12,000 QPPS would accelerate a motor from 0 to 12,000 QPPS in 1 second. Another example
would be an acceleration value of 24,000 QPPS and a speed value of 12,000 QPPS would accelerate the
motor to 12,000 QPPS in 0.5 seconds.

duty_accel_m1(accel, duty, address=None)
Drive M1 with a signed duty and acceleration value. The sign indicates which direction the motor will
run. The acceleration values are not signed. This command is used to drive the motor by PWM and using
an acceleration value for ramping. Accel is the rate per second at which the duty changes from the current
duty to the specified duty.

The duty value is signed and the range is -32768 to +32767(eg. +-100% duty). The accel value range is 0
to 655359(eg maximum acceleration rate is -100% to 100% in 100ms).

duty_accel_m2(accel, duty, address=None)
Drive M2 with a signed duty and acceleration value. The sign indicates which direction the motor will
run. The acceleration values are not signed. This command is used to drive the motor by PWM and using
an acceleration value for ramping. Accel is the rate at which the duty changes from the current duty to the
specified dury.

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). The accel value range is 0
to 655359 (eg maximum acceleration rate is -100% to 100% in 100ms).

duty_accel_m1_m2(accel1, duty1, accel2, duty2, address=None)
Drive M1 and M2 in the same command using acceleration and duty values for each motor. The sign
indicates which direction the motor will run. The acceleration value is not signed. This command is used
to drive the motor by PWM using an acceleration value for ramping.

The duty value is signed and the range is -32768 to +32767 (eg. +-100% duty). The accel value range is 0
to 655359 (eg maximum acceleration rate is -100% to 100% in 100ms).

read_m1_velocity_pid(address=None)
Read the PID and QPPS Settings.

Returns [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte)]

read_m2_velocity_pid(address=None)
Read the PID and QPPS Settings.

Returns [P(4 bytes), I(4 bytes), D(4 bytes), QPPS(4 byte)]

set_main_voltages(minimum, maximum, address=None)
Set the Main Battery Voltage cutoffs, Min and Max. Min and Max voltages are in 10th of a volt increments.
Multiply the voltage to set by 10.

set_logic_voltages(minimum, maximum, address=None)
Set the Logic Battery Voltages cutoffs, Min and Max. Min and Max voltages are in 10th of a volt incre-
ments. Multiply the voltage to set by 10.

read_min_max_main_voltages(address=None)
Read the Main Battery Voltage Settings. The voltage is calculated by dividing the value by 10

Returns [Min(2 bytes), Max(2 bytes)]

read_min_max_logic_voltages(address=None)
Read the Logic Battery Voltage Settings. The voltage is calculated by dividing the value by 10

Returns [Min(2 bytes), Max(2 bytes)]

30 Chapter 2. Usage

RoboClaw

set_m1_position_pid(kp, ki, kd, kimax, deadzone, minimum, maximum, address=None)
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I= Integral
and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts, MinPos = Minimum
Position and MaxPos = Maximum Position. The defaults values are all zero.

Position constants are used only with the Position commands, 65,66 and 67 or when encoders are enabled
in RC/Analog modes.

set_m2_position_pid(kp, ki, kd, kimax, deadzone, minimum, maximum, address=None)
The RoboClaw Position PID system consist of seven constants starting with P = Proportional, I= Integral
and D= Derivative, MaxI = Maximum Integral windup, Deadzone in encoder counts, MinPos = Minimum
Position and MaxPos = Maximum Position. The defaults values are all zero.

Position constants are used only with the Position commands, 65,66 and 67 or when encoders are enabled
in RC/Analog modes.

read_m1_position_pid(address=None)
Read the Position PID Settings.

Returns [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte), MinPos(4 byte),
MaxPos(4 byte)]

read_m2_position_pid(address=None)
Read the Position PID Settings.

Returns [P(4 bytes), I(4 bytes), D(4 bytes), MaxI(4 byte), Deadzone(4 byte), MinPos(4 byte),
MaxPos(4 byte)]

speed_accel_deccel_position_m1(accel, speed, deccel, position, buffer, address=None)
Move M1 position from the current position to the specified new position and hold the new position. Accel
sets the acceleration value and deccel the decceleration value. QSpeed sets the speed in quadrature pulses
the motor will run at after acceleration and before decceleration.

speed_accel_deccel_position_m2(accel, speed, deccel, position, buffer, address=None)
Move M2 position from the current position to the specified new position and hold the new position. Accel
sets the acceleration value and deccel the decceleration value. QSpeed sets the speed in quadrature pulses
the motor will run at after acceleration and before decceleration.

speed_accel_deccel_position_m1_m2(accel1, speed1, deccel1, position1, accel2, speed2,
deccel2, position2, buffer, address=None)

Move M1 & M2 positions from their current positions to the specified new positions and hold the new
positions. Accel sets the acceleration value and deccel the decceleration value. QSpeed sets the speed in
quadrature pulses the motor will run at after acceleration and before decceleration.

set_m1_default_accel(accel, address=None)
Set the default acceleration for M1 when using duty cycle commands (duty_m1() and
duty_m1_m2()) or when using Standard Serial, RC and Analog PWM modes.

set_m2_default_accel(accel, address=None)
Set the default acceleration for M2 when using duty cycle commands (duty_m2() and
duty_m1_m2()) or when using Standard Serial, RC and Analog PWM modes.

set_pin_functions(s3mode, s4mode, s5mode, address=None)
Set modes for S3,S4 and S5.

2.1. Table of Contents 31

RoboClaw

Mode S3mode S4mode S5mode
0 Default Disabled Disabled
1 E-Stop(latching) E-Stop(latching) E-Stop(latching)
2 E-Stop E-Stop E-Stop
3 Voltage Clamp Voltage Clamp Voltage Clamp
4 M1 Home M2 Home

Mode Description

• Disabled: pin is inactive.

• Default: Flip switch if in RC/Analog mode or E-Stop(latching) in Serial modes.

• E-Stop(Latching): causes the Roboclaw to shutdown until the unit is power cycled.

• E-Stop: Holds the Roboclaw in shutdown until the E-Stop signal is cleared.

• Voltage Clamp: Sets the signal pin as an output to drive an external voltage clamp circuit.

• Home(M1 & M2): will trigger the specific motor to stop and the encoder count to reset to 0.

read_pin_functions(address=None)
Read mode settings for S3,S4 and S5. See set_pin_functions() for mode descriptions

Returns [S3mode, S4mode, S5mode]

set_deadband(minimum, maximum, address=None)
Set RC/Analog mode control deadband percentage in 10ths of a percent. Default value is 25(2.5%). Mini-
mum value is 0(no DeadBand), Maximum value is 250(25%).

get_deadband(address=None)
Read DeadBand settings in 10ths of a percent.

Returns [Reverse, SForward]

restore_defaults(address=None)
Reset Settings to factory defaults.

read_temp(address=None)
Read the board temperature. Value returned is in 10ths of degrees.

Returns [Temperature(2 bytes)]

read_temp2(address=None)
Read the second board temperature(only on supported units). Value returned is in 10ths of degrees.

Returns [Temperature(2 bytes)]

read_error(address=None)
Read the current unit status.

Returns [Status]

32 Chapter 2. Usage

RoboClaw

Function Status Bit Mask
Normal 0x0000
M1 OverCurrent Warning 0x0001
M2 OverCurrent Warning 0x0002
E-Stop 0x0004
Temperature Error 0x0008
Temperature2 Error 0x0010
Main Battery High Error 0x0020
Logic Battery High Error 0x0040
Logic Battery Low Error 0x0080
Main Battery High Warning 0x0400
Main Battery Low Warning 0x0800
Termperature Warning 0x1000
Temperature2 Warning 0x2000

read_encoder_modes(address=None)
Read the encoder pins assigned for both motors.

Returns [Enc1Mode, Enc2Mode]

set_m1_encoder_mode(mode, address=None)
Set the Encoder Pin for motor 1. See read_encoder_modes().

set_m2_encoder_mode(mode, address=None)
Set the Encoder Pin for motor 2. See read_encoder_modes().

write_nvm(address=None)
Writes all settings to non-volatile memory. Values will be loaded after each power up.

read_nvm(address=None)
Read all settings from non-volatile memory.

Returns [Enc1Mode, Enc2Mode]

Warning: Concerning TTL Serial: If baudrate changes or the control mode changes communications
will be lost.

set_config(config, address=None)
Set config bits for standard settings.

Function Config Bit Mask
RC Mode 0x0000
Analog Mode 0x0001
Simple Serial Mode 0x0002
Packet Serial Mode 0x0003
Battery Mode Off 0x0000
Battery Mode Auto 0x0004
Battery Mode 2 Cell 0x0008
Battery Mode 3 Cell 0x000C
Battery Mode 4 Cell 0x0010
Battery Mode 5 Cell 0x0014
Battery Mode 6 Cell 0x0018
Battery Mode 7 Cell 0x001C

Continued on next page

2.1. Table of Contents 33

RoboClaw

Table 1 – continued from previous page
Function Config Bit Mask
Mixing 0x0020
Exponential 0x0040
MCU 0x0080
BaudRate 2400 0x0000
BaudRate 9600 0x0020
BaudRate 19200 0x0040
BaudRate 38400 0x0060
BaudRate 57600 0x0080
BaudRate 115200 0x00A0
BaudRate 230400 0x00C0
BaudRate 460800 0x00E0
FlipSwitch 0x0100
Packet Address 0x80 0x0000
Packet Address 0x81 0x0100
Packet Address 0x82 0x0200
Packet Address 0x83 0x0300
Packet Address 0x84 0x0400
Packet Address 0x85 0x0500
Packet Address 0x86 0x0600
Packet Address 0x87 0x0700
Slave Mode 0x0800
Relay Mode 0x1000
Swap Encoders 0x2000
Swap Buttons 0x4000
Multi-Unit Mode 0x8000

Warning: Concerning TTL Serial: * If control mode is changed from packet serial mode when setting
config communications will be lost! * If baudrate of packet serial mode is changed communications
will be lost!

get_config(address=None)
Read config bits for standard settings See set_config().

Returns [Config(2 bytes)]

set_m1_max_current(maximum, address=None)
Set Motor 1 Maximum Current Limit. Current value is in 10ma units. To calculate multiply current limit
by 100.

set_m2_max_current(maximum, address=None)
Set Motor 2 Maximum Current Limit. Current value is in 10ma units. To calculate multiply current limit
by 100.

read_m1_max_current(address=None)
Read Motor 1 Maximum Current Limit. Current value is in 10ma units. To calculate divide value by 100.
MinCurrent is always 0.

Returns [MaxCurrent(4 bytes), MinCurrent(4 bytes)]

read_m2_max_current(address=None)
Read Motor 2 Maximum Current Limit. Current value is in 10ma units. To calculate divide value by 100.
MinCurrent is always 0.

34 Chapter 2. Usage

RoboClaw

Returns [MaxCurrent(4 bytes), MinCurrent(4 bytes)]

set_pwm_mode(mode, address=None)
Set PWM Drive mode. Locked Antiphase(0) or Sign Magnitude(1).

read_pwm_mode(address=None)
Read PWM Drive mode. See set_pwm_mode().

Returns [PWMMode]

read_eeprom(ee_address, address=None)
Read a value from the User EEProm memory(256 bytes).

Returns [Value(2 bytes)]

write_eeprom(ee_address, ee_word, address=None)
Get Priority Levels.

Roboclaw serial commands

Serial Command Enums

class roboclaw.serial_commands.Cmd
the domain of key/value pairs used for serial commands to the roboclaw. Each command represents a specfic
function of the Roboclaw driver.

M1FORWARD = 0
The forward_m1 command byte

M1BACKWARD = 1
The backward_m1 command byte

SETMINMB = 2
The set_min_voltage_main_battery command byte

SETMAXMB = 3
The set_max_voltage_main_battery command byte

M2FORWARD = 4
The forward_m2 command byte

M2BACKWARD = 5
The backward_m2 command byte

M17BIT = 6
The forward_backward_m1 command byte

M27BIT = 7
The forward_backward_m2 command byte

MIXEDFORWARD = 8
The forward_mixed command byte

MIXEDBACKWARD = 9
The backward_mixed command byte

MIXEDRIGHT = 10
The turn_right_mixed command byte

MIXEDLEFT = 11
The turn_left_mixed command byte

2.1. Table of Contents 35

RoboClaw

MIXEDFB = 12
The forward_backward_mixed command byte

MIXEDLR = 13
The left_right_mixed command byte

GETM1ENC = 16
The read_encoder_m1 command byte

GETM2ENC = 17
The read_encoder_m2 command byte

GETM1SPEED = 18
The read_speed_m1 command byte

GETM2SPEED = 19
The read_speed_m2 command byte

RESETENC = 20
The reset_encoders command byte

GETVERSION = 21
The read_version command byte

SETM1ENCCOUNT = 22
The set_enc_m1 command byte

SETM2ENCCOUNT = 23
The set_enc_m2 command byte

GETMBATT = 24
The read_main_battery_voltage command byte

GETLBATT = 25
The read_logic_battery_voltage command byte

SETMINLB = 26
The set_min_voltage_logic_battery command byte

SETMAXLB = 27
The set_max_voltage_logic_battery command byte

SETM1PID = 28
The set_m1_velocity_pid command byte

SETM2PID = 29
The set_m2_velocity_pid command byte

GETM1ISPEED = 30
The read_raw_speed_m1 command byte

GETM2ISPEED = 31
The read_raw_speed_m2 command byte

M1DUTY = 32
The duty_m1 command byte

M2DUTY = 33
The duty_m2 command byte

MIXEDDUTY = 34
The duty_m1_m2 command byte

36 Chapter 2. Usage

RoboClaw

M1SPEED = 35
The speed_m1 command byte

M2SPEED = 36
The speed_m2 command byte

MIXEDSPEED = 37
The speed_m1_m2 command byte

M1SPEEDACCEL = 38
The speed_accel_m1 command byte

M2SPEEDACCEL = 39
The speed_accel_m2 command byte

MIXEDSPEEDACCEL = 40
The speed_accel_m1_m2 command byte

M1SPEEDDIST = 41
The speed_distance_m1 command byte

M2SPEEDDIST = 42
The speed_distance_m2 command byte

MIXEDSPEEDDIST = 43
The speed_distance_m1_m2 command byte

M1SPEEDACCELDIST = 44
The speed_accel_distance_m1 command byte

M2SPEEDACCELDIST = 45
The speed_accel_distance_m2 command byte

MIXEDSPEEDACCELDIST = 46
The speed_accel_distance_m1_m2 command byte

GETBUFFERS = 47
The read_buffer_length command byte

GETPWMS = 48
The read_pwms command byte

GETCURRENTS = 49
The read_currents command byte

MIXEDSPEED2ACCEL = 50
The speed_accel_m1_m2_2 command byte

MIXEDSPEED2ACCELDIST = 51
The speed_accel_distance_m1_m2_2 command byte

M1DUTYACCEL = 52
The duty_accel_m1 command byte

M2DUTYACCEL = 53
The duty_accel_m2 command byte

MIXEDDUTYACCEL = 54
The duty_accel_m1_m2 command byte

READM1PID = 55
The read_m1_velocity_pid command byte

2.1. Table of Contents 37

RoboClaw

READM2PID = 56
The read_m2_velocity_pid command byte

SETMAINVOLTAGES = 57
The set_main_voltages command byte

SETLOGICVOLTAGES = 58
The set_logic_voltages command byte

GETMINMAXMAINVOLTAGES = 59
The read_min_max_main_voltages command byte

GETMINMAXLOGICVOLTAGES = 60
The read_min_max_logic_voltages command byte

SETM1POSPID = 61
The set_m1_position_pid command byte

SETM2POSPID = 62
The set_m2_position_pid command byte

READM1POSPID = 63
The read_m1_position_pid command byte

READM2POSPID = 64
The read_m2_position_pid command byte

M1SPEEDACCELDECCELPOS = 65
The speed_accel_deccel_position_m1 command byte

M2SPEEDACCELDECCELPOS = 66
The speed_accel_deccel_position_m2 command byte

MIXEDSPEEDACCELDECCELPOS = 67
The speed_accel_deccel_position_m1_m2 command byte

SETM1DEFAULTACCEL = 68
The set_m1_default_accel command byte

SETM2DEFAULTACCEL = 69
The set_m2_default_accel command byte

SETPINFUNCTIONS = 74
The set_pin_functions command byte

GETPINFUNCTIONS = 75
The read_pin_functions command byte

SETDEADBAND = 76
The set_deadband command byte

GETDEADBAND = 77
The get_deadband command byte

RESTOREDEFAULTS = 80
The restore_defaults command byte

GETTEMP = 82
The read_temp command byte

GETTEMP2 = 83
The read_temp2 command byte

38 Chapter 2. Usage

RoboClaw

GETERROR = 90
The read_error command byte

GETENCODERMODE = 91
The read_encoder_modes command byte

SETM1ENCODERMODE = 92
The set_m1_encoder_mode command byte

SETM2ENCODERMODE = 93
The set_m2_encoder_mode command byte

WRITENVM = 94
The write_nvm command byte

READNVM = 95
The read_nvm command byte

SETCONFIG = 98
The set_config command byte

GETCONFIG = 99
The get_config command byte

SETM1MAXCURRENT = 133
The set_m1_max_current command byte

SETM2MAXCURRENT = 134
The set_m2_max_current command byte

GETM1MAXCURRENT = 135
The read_m1_max_current command byte

GETM2MAXCURRENT = 136
The read_m2_max_current command byte

SETPWMMODE = 148
The set_pwm_mode command byte

GETPWMMODE = 149
The read_pwm_mode command byte

READEEPROM = 252
The read_eeprom command byte

WRITEEEPROM = 253
The write_eeprom command byte

FLAGBOOTLOADER = 255
The command byte

2.1.3 Helpers

CRC16 data manipulation

A module for manipulating dat including generating CRC values and datatype constraints. For more information on
how CRC algorithms work: https://www.zlib.net/crc_v3.txt

roboclaw.data_manip.make_poly(bit_length, msb=False)
Make int “degree polynomial” in which each bit represents a degree who’s coefficient is 1

Parameters

2.1. Table of Contents 39

https://www.zlib.net/crc_v3.txt
https://docs.python.org/3.6/library/functions.html#int

RoboClaw

• bit_length (int) – The amount of bits to play with

• msb (bool) – True make only the MSBit 1 and the rest a 0. False makes all bits 1.

roboclaw.data_manip.crc16(data, deg_poly=4129, init_value=0)
Calculates a checksum of 16-bit length

roboclaw.data_manip.crc32(data, deg_poly=23302, init_value=5592405)
Calculates a checksum of 32-bit length. Default deg_poly and init_value values are BLE compliant.

roboclaw.data_manip.crc_bits(data, bit_length, deg_poly, init_value)
Calculates a checksum of various sized buffers

Parameters

• data (bytearray) – This bytearray of data to be uncorrupted.

• bit_length (int) – The length of bits that will represent the checksum.

• deg_poly (int) – A preset “degree polynomial” in which each bit represents a degree
who’s coefficient is 1.

• init_value (int) – This will be the value that the checksum will use while shifting in
the buffer data.

roboclaw.data_manip.validate16(data, deg_poly=4129, init_value=0)
Validates a received data by comparing the calculated 16-bit checksum with the checksum included at the end
of the data

roboclaw.data_manip.validate(data, bit_length, deg_poly, init_value)
Validates a received checksum of various sized buffers

Parameters

• data (bytearray) – This bytearray of data to be uncorrupted.

• bit_length (int) – The length of bits that will represent the checksum.

• deg_poly (int) – A preset “degree polynomial” (in which each bit represents a degree
who’s coefficient is 1) as a quotient.

• init_value (int) – This will be the value that the checksum will use while shifting in
the buffer data.

Returns True if data was uncorrupted. False if something went wrong. (either checksum didn’t
match or payload is altered).

UART Serial with context manager For MicroPython

This module contains a wrapper class for MicroPython’s UART or CircuitPython’s UART class to work as a drop-in
replacement to Serial object.

Note: This helper class does not expose all the pySerial API. It’s tailored to this library only. That said, to use this:

from roboclaw.usart_serial_ctx import SerialUART as UART
serial_bus = UART()
with serial_bus:

serial_bus.read_until() # readline() with timeout
serial_bus.in_waiting() # how many bytes in the RX buffer
serial_bus.close() # same as UART.deinit()

exit ``with`` also calls machine.UART.deinit()

40 Chapter 2. Usage

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://docs.python.org/3.6/library/stdtypes.html#bytearray
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#True
https://docs.python.org/3.6/library/constants.html#False
http://docs.micropython.org/en/latest/library/machine.UART.html#machine.UART
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/UART.html#busio.UART
https://pyserial.readthedocs.io/en/latest/pyserial_api.html#serial.Serial

RoboClaw

2.2 Indices and tables

• genindex

• modindex

• search

2.2. Indices and tables 41

RoboClaw

42 Chapter 2. Usage

Python Module Index

r
roboclaw.data_manip, 39
roboclaw.roboclaw, 22
roboclaw.serial_commands, 35

43

RoboClaw

44 Python Module Index

Index

A
address (roboclaw.roboclaw.Roboclaw attribute), 22

B
backward_m1() (roboclaw.roboclaw.Roboclaw

method), 22
backward_m2() (roboclaw.roboclaw.Roboclaw

method), 23
backward_mixed() (roboclaw.roboclaw.Roboclaw

method), 23

C
Cmd (class in roboclaw.serial_commands), 35
crc16() (in module roboclaw.data_manip), 40
crc32() (in module roboclaw.data_manip), 40
crc_bits() (in module roboclaw.data_manip), 40

D
duty_accel_m1() (roboclaw.roboclaw.Roboclaw

method), 30
duty_accel_m1_m2() (robo-

claw.roboclaw.Roboclaw method), 30
duty_accel_m2() (roboclaw.roboclaw.Roboclaw

method), 30
duty_m1() (roboclaw.roboclaw.Roboclaw method), 26
duty_m1_m2() (roboclaw.roboclaw.Roboclaw

method), 26
duty_m2() (roboclaw.roboclaw.Roboclaw method), 26

F
FLAGBOOTLOADER (roboclaw.serial_commands.Cmd

attribute), 39
forward_backward_m1() (robo-

claw.roboclaw.Roboclaw method), 23
forward_backward_m2() (robo-

claw.roboclaw.Roboclaw method), 23
forward_backward_mixed() (robo-

claw.roboclaw.Roboclaw method), 23

forward_m1() (roboclaw.roboclaw.Roboclaw
method), 22

forward_m2() (roboclaw.roboclaw.Roboclaw
method), 23

forward_mixed() (roboclaw.roboclaw.Roboclaw
method), 23

G
get_config() (roboclaw.roboclaw.Roboclaw

method), 34
get_deadband() (roboclaw.roboclaw.Roboclaw

method), 32
GETBUFFERS (roboclaw.serial_commands.Cmd at-

tribute), 37
GETCONFIG (roboclaw.serial_commands.Cmd at-

tribute), 39
GETCURRENTS (roboclaw.serial_commands.Cmd

attribute), 37
GETDEADBAND (roboclaw.serial_commands.Cmd

attribute), 38
GETENCODERMODE (roboclaw.serial_commands.Cmd

attribute), 39
GETERROR (roboclaw.serial_commands.Cmd attribute),

38
GETLBATT (roboclaw.serial_commands.Cmd attribute),

36
GETM1ENC (roboclaw.serial_commands.Cmd attribute),

36
GETM1ISPEED (roboclaw.serial_commands.Cmd

attribute), 36
GETM1MAXCURRENT (roboclaw.serial_commands.Cmd

attribute), 39
GETM1SPEED (roboclaw.serial_commands.Cmd at-

tribute), 36
GETM2ENC (roboclaw.serial_commands.Cmd attribute),

36
GETM2ISPEED (roboclaw.serial_commands.Cmd

attribute), 36
GETM2MAXCURRENT (roboclaw.serial_commands.Cmd

attribute), 39

45

RoboClaw

GETM2SPEED (roboclaw.serial_commands.Cmd at-
tribute), 36

GETMBATT (roboclaw.serial_commands.Cmd attribute),
36

GETMINMAXLOGICVOLTAGES (robo-
claw.serial_commands.Cmd attribute), 38

GETMINMAXMAINVOLTAGES (robo-
claw.serial_commands.Cmd attribute), 38

GETPINFUNCTIONS (roboclaw.serial_commands.Cmd
attribute), 38

GETPWMMODE (roboclaw.serial_commands.Cmd at-
tribute), 39

GETPWMS (roboclaw.serial_commands.Cmd attribute),
37

GETTEMP (roboclaw.serial_commands.Cmd attribute),
38

GETTEMP2 (roboclaw.serial_commands.Cmd attribute),
38

GETVERSION (roboclaw.serial_commands.Cmd at-
tribute), 36

L
left_right_mixed() (robo-

claw.roboclaw.Roboclaw method), 23

M
M17BIT (roboclaw.serial_commands.Cmd attribute), 35
M1BACKWARD (roboclaw.serial_commands.Cmd at-

tribute), 35
M1DUTY (roboclaw.serial_commands.Cmd attribute), 36
M1DUTYACCEL (roboclaw.serial_commands.Cmd

attribute), 37
M1FORWARD (roboclaw.serial_commands.Cmd at-

tribute), 35
M1SPEED (roboclaw.serial_commands.Cmd attribute),

36
M1SPEEDACCEL (roboclaw.serial_commands.Cmd at-

tribute), 37
M1SPEEDACCELDECCELPOS (robo-

claw.serial_commands.Cmd attribute), 38
M1SPEEDACCELDIST (robo-

claw.serial_commands.Cmd attribute), 37
M1SPEEDDIST (roboclaw.serial_commands.Cmd

attribute), 37
M27BIT (roboclaw.serial_commands.Cmd attribute), 35
M2BACKWARD (roboclaw.serial_commands.Cmd at-

tribute), 35
M2DUTY (roboclaw.serial_commands.Cmd attribute), 36
M2DUTYACCEL (roboclaw.serial_commands.Cmd

attribute), 37
M2FORWARD (roboclaw.serial_commands.Cmd at-

tribute), 35
M2SPEED (roboclaw.serial_commands.Cmd attribute),

37

M2SPEEDACCEL (roboclaw.serial_commands.Cmd at-
tribute), 37

M2SPEEDACCELDECCELPOS (robo-
claw.serial_commands.Cmd attribute), 38

M2SPEEDACCELDIST (robo-
claw.serial_commands.Cmd attribute), 37

M2SPEEDDIST (roboclaw.serial_commands.Cmd
attribute), 37

make_poly() (in module roboclaw.data_manip), 39
MIXEDBACKWARD (roboclaw.serial_commands.Cmd at-

tribute), 35
MIXEDDUTY (roboclaw.serial_commands.Cmd at-

tribute), 36
MIXEDDUTYACCEL (roboclaw.serial_commands.Cmd

attribute), 37
MIXEDFB (roboclaw.serial_commands.Cmd attribute),

35
MIXEDFORWARD (roboclaw.serial_commands.Cmd at-

tribute), 35
MIXEDLEFT (roboclaw.serial_commands.Cmd at-

tribute), 35
MIXEDLR (roboclaw.serial_commands.Cmd attribute),

36
MIXEDRIGHT (roboclaw.serial_commands.Cmd at-

tribute), 35
MIXEDSPEED (roboclaw.serial_commands.Cmd at-

tribute), 37
MIXEDSPEED2ACCEL (robo-

claw.serial_commands.Cmd attribute), 37
MIXEDSPEED2ACCELDIST (robo-

claw.serial_commands.Cmd attribute), 37
MIXEDSPEEDACCEL (roboclaw.serial_commands.Cmd

attribute), 37
MIXEDSPEEDACCELDECCELPOS (robo-

claw.serial_commands.Cmd attribute), 38
MIXEDSPEEDACCELDIST (robo-

claw.serial_commands.Cmd attribute), 37
MIXEDSPEEDDIST (roboclaw.serial_commands.Cmd

attribute), 37

P
packet_serial (roboclaw.roboclaw.Roboclaw

attribute), 22

R
read_buffer_length() (robo-

claw.roboclaw.Roboclaw method), 29
read_currents() (roboclaw.roboclaw.Roboclaw

method), 29
read_eeprom() (roboclaw.roboclaw.Roboclaw

method), 35
read_encoder_m1() (roboclaw.roboclaw.Roboclaw

method), 24

46 Index

RoboClaw

read_encoder_m2() (roboclaw.roboclaw.Roboclaw
method), 24

read_encoder_modes() (robo-
claw.roboclaw.Roboclaw method), 33

read_error() (roboclaw.roboclaw.Roboclaw
method), 32

read_logic_battery_voltage() (robo-
claw.roboclaw.Roboclaw method), 25

read_m1_max_current() (robo-
claw.roboclaw.Roboclaw method), 34

read_m1_position_pid() (robo-
claw.roboclaw.Roboclaw method), 31

read_m1_velocity_pid() (robo-
claw.roboclaw.Roboclaw method), 30

read_m2_max_current() (robo-
claw.roboclaw.Roboclaw method), 34

read_m2_position_pid() (robo-
claw.roboclaw.Roboclaw method), 31

read_m2_velocity_pid() (robo-
claw.roboclaw.Roboclaw method), 30

read_main_battery_voltage() (robo-
claw.roboclaw.Roboclaw method), 25

read_min_max_logic_voltages() (robo-
claw.roboclaw.Roboclaw method), 30

read_min_max_main_voltages() (robo-
claw.roboclaw.Roboclaw method), 30

read_nvm() (roboclaw.roboclaw.Roboclaw method),
33

read_pin_functions() (robo-
claw.roboclaw.Roboclaw method), 32

read_pwm_mode() (roboclaw.roboclaw.Roboclaw
method), 35

read_pwms() (roboclaw.roboclaw.Roboclaw method),
29

read_raw_speed_m1() (robo-
claw.roboclaw.Roboclaw method), 26

read_raw_speed_m2() (robo-
claw.roboclaw.Roboclaw method), 26

read_speed_m1() (roboclaw.roboclaw.Roboclaw
method), 24

read_speed_m2() (roboclaw.roboclaw.Roboclaw
method), 24

read_temp() (roboclaw.roboclaw.Roboclaw method),
32

read_temp2() (roboclaw.roboclaw.Roboclaw
method), 32

read_version() (roboclaw.roboclaw.Roboclaw
method), 24

READEEPROM (roboclaw.serial_commands.Cmd at-
tribute), 39

READM1PID (roboclaw.serial_commands.Cmd at-
tribute), 37

READM1POSPID (roboclaw.serial_commands.Cmd at-
tribute), 38

READM2PID (roboclaw.serial_commands.Cmd at-
tribute), 37

READM2POSPID (roboclaw.serial_commands.Cmd at-
tribute), 38

READNVM (roboclaw.serial_commands.Cmd attribute),
39

reset_encoders() (roboclaw.roboclaw.Roboclaw
method), 24

RESETENC (roboclaw.serial_commands.Cmd attribute),
36

restore_defaults() (robo-
claw.roboclaw.Roboclaw method), 32

RESTOREDEFAULTS (roboclaw.serial_commands.Cmd
attribute), 38

Roboclaw (class in roboclaw.roboclaw), 22
roboclaw.data_manip (module), 39
roboclaw.roboclaw (module), 22
roboclaw.serial_commands (module), 35

S
send_random_data() (robo-

claw.roboclaw.Roboclaw method), 22
set_config() (roboclaw.roboclaw.Roboclaw

method), 33
set_deadband() (roboclaw.roboclaw.Roboclaw

method), 32
set_enc_m1() (roboclaw.roboclaw.Roboclaw

method), 24
set_enc_m2() (roboclaw.roboclaw.Roboclaw

method), 25
set_logic_voltages() (robo-

claw.roboclaw.Roboclaw method), 30
set_m1_default_accel() (robo-

claw.roboclaw.Roboclaw method), 31
set_m1_encoder_mode() (robo-

claw.roboclaw.Roboclaw method), 33
set_m1_max_current() (robo-

claw.roboclaw.Roboclaw method), 34
set_m1_position_pid() (robo-

claw.roboclaw.Roboclaw method), 30
set_m1_velocity_pid() (robo-

claw.roboclaw.Roboclaw method), 25
set_m2_default_accel() (robo-

claw.roboclaw.Roboclaw method), 31
set_m2_encoder_mode() (robo-

claw.roboclaw.Roboclaw method), 33
set_m2_max_current() (robo-

claw.roboclaw.Roboclaw method), 34
set_m2_position_pid() (robo-

claw.roboclaw.Roboclaw method), 31
set_m2_velocity_pid() (robo-

claw.roboclaw.Roboclaw method), 25
set_main_voltages() (robo-

claw.roboclaw.Roboclaw method), 30

Index 47

RoboClaw

set_max_voltage_logic_battery() (robo-
claw.roboclaw.Roboclaw method), 25

set_max_voltage_main_battery() (robo-
claw.roboclaw.Roboclaw method), 22

set_min_voltage_logic_battery() (robo-
claw.roboclaw.Roboclaw method), 25

set_min_voltage_main_battery() (robo-
claw.roboclaw.Roboclaw method), 22

set_pin_functions() (robo-
claw.roboclaw.Roboclaw method), 31

set_pwm_mode() (roboclaw.roboclaw.Roboclaw
method), 35

SETCONFIG (roboclaw.serial_commands.Cmd at-
tribute), 39

SETDEADBAND (roboclaw.serial_commands.Cmd
attribute), 38

SETLOGICVOLTAGES (robo-
claw.serial_commands.Cmd attribute), 38

SETM1DEFAULTACCEL (robo-
claw.serial_commands.Cmd attribute), 38

SETM1ENCCOUNT (roboclaw.serial_commands.Cmd at-
tribute), 36

SETM1ENCODERMODE (robo-
claw.serial_commands.Cmd attribute), 39

SETM1MAXCURRENT (roboclaw.serial_commands.Cmd
attribute), 39

SETM1PID (roboclaw.serial_commands.Cmd attribute),
36

SETM1POSPID (roboclaw.serial_commands.Cmd
attribute), 38

SETM2DEFAULTACCEL (robo-
claw.serial_commands.Cmd attribute), 38

SETM2ENCCOUNT (roboclaw.serial_commands.Cmd at-
tribute), 36

SETM2ENCODERMODE (robo-
claw.serial_commands.Cmd attribute), 39

SETM2MAXCURRENT (roboclaw.serial_commands.Cmd
attribute), 39

SETM2PID (roboclaw.serial_commands.Cmd attribute),
36

SETM2POSPID (roboclaw.serial_commands.Cmd
attribute), 38

SETMAINVOLTAGES (roboclaw.serial_commands.Cmd
attribute), 38

SETMAXLB (roboclaw.serial_commands.Cmd attribute),
36

SETMAXMB (roboclaw.serial_commands.Cmd attribute),
35

SETMINLB (roboclaw.serial_commands.Cmd attribute),
36

SETMINMB (roboclaw.serial_commands.Cmd attribute),
35

SETPINFUNCTIONS (roboclaw.serial_commands.Cmd
attribute), 38

SETPWMMODE (roboclaw.serial_commands.Cmd at-
tribute), 39

speed_accel_deccel_position_m1() (robo-
claw.roboclaw.Roboclaw method), 31

speed_accel_deccel_position_m1_m2()
(roboclaw.roboclaw.Roboclaw method), 31

speed_accel_deccel_position_m2() (robo-
claw.roboclaw.Roboclaw method), 31

speed_accel_distance_m1() (robo-
claw.roboclaw.Roboclaw method), 28

speed_accel_distance_m1_m2() (robo-
claw.roboclaw.Roboclaw method), 29

speed_accel_distance_m1_m2_2() (robo-
claw.roboclaw.Roboclaw method), 29

speed_accel_distance_m2() (robo-
claw.roboclaw.Roboclaw method), 28

speed_accel_m1() (roboclaw.roboclaw.Roboclaw
method), 27

speed_accel_m1_m2() (robo-
claw.roboclaw.Roboclaw method), 27

speed_accel_m1_m2_2() (robo-
claw.roboclaw.Roboclaw method), 29

speed_accel_m2() (roboclaw.roboclaw.Roboclaw
method), 27

speed_distance_m1() (robo-
claw.roboclaw.Roboclaw method), 27

speed_distance_m1_m2() (robo-
claw.roboclaw.Roboclaw method), 28

speed_distance_m2() (robo-
claw.roboclaw.Roboclaw method), 28

speed_m1() (roboclaw.roboclaw.Roboclaw method),
26

speed_m1_m2() (roboclaw.roboclaw.Roboclaw
method), 27

speed_m2() (roboclaw.roboclaw.Roboclaw method),
26

T
turn_left_mixed() (roboclaw.roboclaw.Roboclaw

method), 23
turn_right_mixed() (robo-

claw.roboclaw.Roboclaw method), 23

V
validate() (in module roboclaw.data_manip), 40
validate16() (in module roboclaw.data_manip), 40

W
write_eeprom() (roboclaw.roboclaw.Roboclaw

method), 35
write_nvm() (roboclaw.roboclaw.Roboclaw method),

33
WRITEEEPROM (roboclaw.serial_commands.Cmd

attribute), 39

48 Index

RoboClaw

WRITENVM (roboclaw.serial_commands.Cmd attribute),
39

Index 49

	Installation
	Usage
	Table of Contents
	Indices and tables

	Python Module Index
	Index

